skip to main content


Search for: All records

Creators/Authors contains: "Lujan Niemeyer, Maja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.

     
    more » « less
  2. Abstract

    We present extended Lyαemission out to 800 kpc of 1034 [Oiii]-selected galaxies at redshifts 1.9 <z< 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyαemission of the [Oiii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) atr> 40 kpc from the galaxy centers. The surface brightness in the inner parts (r< 10 kpc) around the [Oiii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyαhalos are not produced in the central galaxies but originate outside of them.

     
    more » « less
  3. Abstract

    We present the median-stacked Lyman-α (Lyα) surface brightness profiles of 968 spectroscopically selected Lyαemitting galaxies (LAEs) at redshifts 1.9 <z< 3.5 in the early data of the Hobby-Eberly Telescope Dark Energy Experiment. The selected LAEs are high-confidence Lyαdetections with high signal-to-noise ratios observed with good seeing conditions (point-spread function FWHM <1.″4), excluding active galactic nuclei. The Lyαluminosities of the LAEs are 1042.4–1043erg s−1. We detect faint emission in the median-stacked radial profiles at the level of(3.6±1.3)×1020ergs1cm2arcsec2from the surrounding Lyαhalos out tor≃ 160 kpc (physical). The shape of the median-stacked radial profile is consistent atr< 80 kpc with that of much fainter LAEs at 3 <z< 4 observed with the Multi Unit Spectroscopic Explorer (MUSE), indicating that the median-stacked Lyαprofiles have similar shapes at redshifts 2 <z< 4 and across a factor of 10 in Lyαluminosity. While we agree with the results from the MUSE sample atr< 80 kpc, we extend the profile over a factor of two in radius. Atr> 80 kpc, our profile is flatter than the MUSE model. The measured profile agrees at most radii with that of galaxies in the Byrohl et al. cosmological radiative transfer simulation atz= 3. This suggests that the surface brightness of a Lyαhalo atr≲ 100 kpc is dominated by resonant scattering of Lyαphotons from star-forming regions in the central galaxy, whereas atr> 100 kpc, it is dominated by photons from galaxies in surrounding dark matter halos.

     
    more » « less